
introducción a la complejidad computacional

Gonzalo Zigarán
Facultad de Matemática, Astronomía, Física y Computación - U.N.C.

Seminario de Alumnes
21 de Octubre de 2022

Teoría de la Computación

El trabajo de A. Turing1 se considera
como el precursor de la Teoría de la Computación (ToC).

∙ Máquina de Turing (Alan Turing)

∙ Cálculo Lambda (Alonzo Church)

∙ Funciones recursivas (Kurt Gödel)

∙ Paradigma imperativo (John von Neumann)

Tesis de Church-Turing
Observación
Lo que motivó fuertemente el desarrollo que tuvo la ToC en estos primeros años, a partir del
contexto histórico, fue la criptografía. De alguna manera es una de las áreas que invita al estudio
abstracto y formal de la ToC, y a su vez, naturalmente tiene gran influencia en el desarrollo de la
Complejidad Computacional.

1A.M Turing; ”On computable numbers; with an application to the Entscheidungsproblem”; 1936.

1

Teoría de la Computación

El trabajo de A. Turing1 se considera
como el precursor de la Teoría de la Computación (ToC).

∙ Máquina de Turing (Alan Turing)

∙ Cálculo Lambda (Alonzo Church)

∙ Funciones recursivas (Kurt Gödel)

∙ Paradigma imperativo (John von Neumann)

Tesis de Church-Turing

Observación
Lo que motivó fuertemente el desarrollo que tuvo la ToC en estos primeros años, a partir del
contexto histórico, fue la criptografía. De alguna manera es una de las áreas que invita al estudio
abstracto y formal de la ToC, y a su vez, naturalmente tiene gran influencia en el desarrollo de la
Complejidad Computacional.

1A.M Turing; ”On computable numbers; with an application to the Entscheidungsproblem”; 1936.

1

Teoría de la Computación

El trabajo de A. Turing1 se considera
como el precursor de la Teoría de la Computación (ToC).

∙ Máquina de Turing (Alan Turing)

∙ Cálculo Lambda (Alonzo Church)

∙ Funciones recursivas (Kurt Gödel)

∙ Paradigma imperativo (John von Neumann)

Tesis de Church-Turing
Observación
Lo que motivó fuertemente el desarrollo que tuvo la ToC en estos primeros años, a partir del
contexto histórico, fue la criptografía. De alguna manera es una de las áreas que invita al estudio
abstracto y formal de la ToC, y a su vez, naturalmente tiene gran influencia en el desarrollo de la
Complejidad Computacional.

1A.M Turing; ”On computable numbers; with an application to the Entscheidungsproblem”; 1936.

1

Máquina de Turing

2

Máquina de Turing

2

Máquina de Turing

3

Ejemplo

∙ Q = {q0, q1}

∙ Γ = {B, 0, 1}
∙ δ : Q× Γ → Q× Γ× {L, R, S}
∙ δ(q0, 0) = (q0, 1, R)
∙ δ(q0, 1) = (q0, 1, R)
∙ δ(q0, B) = (q1, B, L)

4

Complejidad Computacional

”Determinar la cantidad mínima de recursos necesarios para resolver problemas
computacionales, con modelos computacionales.”

Cuando pensamos en la complejidad de un problema, se suele pensar en la
complejidad del peor caso. ¿Por qué?

Complejidad de un problema vs. Complejidad de un algoritmo
¿Cúal es la complejidad de ordenar los elementos de una lista?

5

Complejidad Computacional

”Determinar la cantidad mínima de recursos necesarios para resolver problemas
computacionales, con modelos computacionales.”

Cuando pensamos en la complejidad de un problema, se suele pensar en la
complejidad del peor caso. ¿Por qué?

Complejidad de un problema vs. Complejidad de un algoritmo
¿Cúal es la complejidad de ordenar los elementos de una lista?

5

Complejidad Computacional

”Determinar la cantidad mínima de recursos necesarios para resolver problemas
computacionales, con modelos computacionales.”

Cuando pensamos en la complejidad de un problema, se suele pensar en la
complejidad del peor caso. ¿Por qué?

Complejidad de un problema vs. Complejidad de un algoritmo
¿Cúal es la complejidad de ordenar los elementos de una lista?

5

Complejidad Computacional

”Determinar la cantidad mínima de recursos necesarios para resolver problemas
computacionales, con modelos computacionales.”

Cuando pensamos en la complejidad de un problema, se suele pensar en la
complejidad del peor caso. ¿Por qué?

Complejidad de un problema vs. Complejidad de un algoritmo
¿Cúal es la complejidad de ordenar los elementos de una lista?

5

Ejemplo

1. ¿Qué ecuaciones diofánticas de la forma Ax2 + By+ C = 0 tienen una solución
entera positiva?

2. ¿Qué nudos en variedades tridimensionales unen una superficie de género ≤ g?

3. ¿Qué mapas planares son 3-coloreables?

Teorema
Los problemas 1., 2. y 3. son equivalentes.

6

Ejemplo

1. ¿Qué ecuaciones diofánticas de la forma Ax2 + By+ C = 0 tienen una solución
entera positiva?

2. ¿Qué nudos en variedades tridimensionales unen una superficie de género ≤ g?

3. ¿Qué mapas planares son 3-coloreables?

Teorema
Los problemas 1., 2. y 3. son equivalentes.

6

Representación de los problemas

Cada problema hay que decidir cómo representar una entrada (por ej. en 1. una
ecuación dada) para decidir luego si el problema se resuelve para esa entrada o no.

Posibles entradas para los ejemplos:

1. (A, B, C)

2. (M, K, G)

3. (V, E)

Denotamos con In a todas las secuencias binarias de largo n, es decir In := {0, 1}n .
Luego,

I :=
⋃

In

a todas las secuencias binarias de cualquier largo.

Todas las entradas las pensamos dentro de I.

7

Representación de los problemas

Cada problema hay que decidir cómo representar una entrada (por ej. en 1. una
ecuación dada) para decidir luego si el problema se resuelve para esa entrada o no.

Posibles entradas para los ejemplos:

1. (A, B, C)

2. (M, K, G)

3. (V, E)

Denotamos con In a todas las secuencias binarias de largo n, es decir In := {0, 1}n .
Luego,

I :=
⋃

In

a todas las secuencias binarias de cualquier largo.

Todas las entradas las pensamos dentro de I.

7

Representación de los problemas

Para cada problema tenemos una función que convierte la entrada en una secuencia
binaria. Por ejemplo para 1., tendríamos

h : Z3 → I

(A,B, C) 7→ x

donde x ∈ I es una secuencia binaria.

Luego, una solución al problema de decisión sería una función computable
f : I → {0, 1} tal que,

f ◦ h(A,B, C) = 1 si y solo si la ecuación Ax2 + By+ C = 0 tiene una solución entera
positiva.

8

Representación de los problemas

Para cada problema tenemos una función que convierte la entrada en una secuencia
binaria. Por ejemplo para 1., tendríamos

h : Z3 → I

(A,B, C) 7→ x

donde x ∈ I es una secuencia binaria.

Luego, una solución al problema de decisión sería una función computable
f : I → {0, 1} tal que,

f ◦ h(A,B, C) = 1 si y solo si la ecuación Ax2 + By+ C = 0 tiene una solución entera
positiva.

8

Representación de los problemas

Para cada problema tenemos una función que convierte la entrada en una secuencia
binaria. Por ejemplo para 1., tendríamos

h : Z3 → I

(A,B, C) 7→ x

donde x ∈ I es una secuencia binaria.

Luego, una solución al problema de decisión sería una función computable
f : I → {0, 1} tal que,

f ◦ h(A,B, C) = 1 si y solo si la ecuación Ax2 + By+ C = 0 tiene una solución entera
positiva.

8

Clase P

Definición
Una función f : I → I está en la clase P si existe una maquina de Turing que compute
f y constantes positivas A y c tal que para todo n ≥ 0 y todo x ∈ In , la maquina de
Turing computa f(x) en a lo sumo Anc pasos.

Definición ’
Una función f : I → I está en la clase P si existe un algoritmo que compute f y
constantes positivas A y c tal que para todo n ≥ 0 y todo x ∈ In , el algoritmo computa
f(x) en a lo sumo Anc pasos.

Definición ”
Una función f : I → {0, 1} está en la clase P si existe un algoritmo que compute f y
constantes positivas A y c tal que para todo n ≥ 0 y todo x ∈ In , el algoritmo computa
f(x) en a lo sumo Anc pasos.

Definición ”’
Un conjunto C está en la clase P si existe un algoritmo y constantes positivas A y c tal
que para todo n ≥ 0 y todo x ∈ In , el algoritmo decide si x está en C en a lo sumo Anc

pasos.

9

Clase P

Definición
Una función f : I → I está en la clase P si existe una maquina de Turing que compute
f y constantes positivas A y c tal que para todo n ≥ 0 y todo x ∈ In , la maquina de
Turing computa f(x) en a lo sumo Anc pasos.

Definición ’
Una función f : I → I está en la clase P si existe un algoritmo que compute f y
constantes positivas A y c tal que para todo n ≥ 0 y todo x ∈ In , el algoritmo computa
f(x) en a lo sumo Anc pasos.

Definición ”
Una función f : I → {0, 1} está en la clase P si existe un algoritmo que compute f y
constantes positivas A y c tal que para todo n ≥ 0 y todo x ∈ In , el algoritmo computa
f(x) en a lo sumo Anc pasos.

Definición ”’
Un conjunto C está en la clase P si existe un algoritmo y constantes positivas A y c tal
que para todo n ≥ 0 y todo x ∈ In , el algoritmo decide si x está en C en a lo sumo Anc

pasos.

9

Clase P

Definición
Una función f : I → I está en la clase P si existe una maquina de Turing que compute
f y constantes positivas A y c tal que para todo n ≥ 0 y todo x ∈ In , la maquina de
Turing computa f(x) en a lo sumo Anc pasos.

Definición ’
Una función f : I → I está en la clase P si existe un algoritmo que compute f y
constantes positivas A y c tal que para todo n ≥ 0 y todo x ∈ In , el algoritmo computa
f(x) en a lo sumo Anc pasos.

Definición ”
Una función f : I → {0, 1} está en la clase P si existe un algoritmo que compute f y
constantes positivas A y c tal que para todo n ≥ 0 y todo x ∈ In , el algoritmo computa
f(x) en a lo sumo Anc pasos.

Definición ”’
Un conjunto C está en la clase P si existe un algoritmo y constantes positivas A y c tal
que para todo n ≥ 0 y todo x ∈ In , el algoritmo decide si x está en C en a lo sumo Anc

pasos.

9

Clase P

Definición
Una función f : I → I está en la clase P si existe una maquina de Turing que compute
f y constantes positivas A y c tal que para todo n ≥ 0 y todo x ∈ In , la maquina de
Turing computa f(x) en a lo sumo Anc pasos.

Definición ’
Una función f : I → I está en la clase P si existe un algoritmo que compute f y
constantes positivas A y c tal que para todo n ≥ 0 y todo x ∈ In , el algoritmo computa
f(x) en a lo sumo Anc pasos.

Definición ”
Una función f : I → {0, 1} está en la clase P si existe un algoritmo que compute f y
constantes positivas A y c tal que para todo n ≥ 0 y todo x ∈ In , el algoritmo computa
f(x) en a lo sumo Anc pasos.

Definición ”’
Un conjunto C está en la clase P si existe un algoritmo y constantes positivas A y c tal
que para todo n ≥ 0 y todo x ∈ In , el algoritmo decide si x está en C en a lo sumo Anc

pasos.

9

Ejemplos

∙ Perfect matching. Decidir si en un grafo se pueden emparejar los vértices, de modo
que haya una arista entre cada par.

∙ Primality testing. Determinar si un número es primo.

∙ Planarity testing. Decidir si un grafo es plano.

∙ Linear programming. Decidir si un conjunto de desigualdades lineales son
satisfacibles al mismo tiempo.

∙ Hyperbolic word problem. Dado un grupo hiperbólico y una palabra w de
generadores, decidir si w representa el elemento identidad.

∙ Graph Connectivity. Decidir si todo par de vértices de un grafo tiene un camino.

∙ Satisfiability. Dada una fórmula de primer orden, decidir si existen valores que la
hacen verdadera.

10

Clase NP

¿Cuál es la complejidad de decidir si una proposición es un teorema?

¿Cuál es la complejidad de, dada una demostración de un teorema, decidir si es
correcta?

Definición
Un conjunto C está en la clase NP si existe una función VC ∈ P y una constante k tal
que:

∙ Si x ∈ C, entonces ∃y con |y| ≤ k · |x|k y VC(x, y) = 1;

∙ Si x /∈ C, entonces ∀y tenemos que VC(x, y) = 0.

Si pensamos a P como una clase de conjuntos, es claro que P ⊆ NP . (Tomando y la
secuencia vacía)

¿P = NP?

11

Clase NP

¿Cuál es la complejidad de decidir si una proposición es un teorema?

¿Cuál es la complejidad de, dada una demostración de un teorema, decidir si es
correcta?

Definición
Un conjunto C está en la clase NP si existe una función VC ∈ P y una constante k tal
que:

∙ Si x ∈ C, entonces ∃y con |y| ≤ k · |x|k y VC(x, y) = 1;

∙ Si x /∈ C, entonces ∀y tenemos que VC(x, y) = 0.

Si pensamos a P como una clase de conjuntos, es claro que P ⊆ NP . (Tomando y la
secuencia vacía)

¿P = NP?

11

Clase NP

¿Cuál es la complejidad de decidir si una proposición es un teorema?

¿Cuál es la complejidad de, dada una demostración de un teorema, decidir si es
correcta?

Definición
Un conjunto C está en la clase NP si existe una función VC ∈ P y una constante k tal
que:

∙ Si x ∈ C, entonces ∃y con |y| ≤ k · |x|k y VC(x, y) = 1;

∙ Si x /∈ C, entonces ∀y tenemos que VC(x, y) = 0.

Si pensamos a P como una clase de conjuntos, es claro que P ⊆ NP . (Tomando y la
secuencia vacía)

¿P = NP?

11

Ejemplos

∙ Hamiltonian cycles in graphs. Decidir si un grafo tiene un ciclo hamiltoneano.

∙ Factoring integers. Dada una tupla de enteros (x, a, b), decidir si x tiene un factor
primo en el intervalo [a, b]

∙ Integer programming. Decidir si un conjunto de desigualdades lineales son
satisfacibles al mismo tiempo por soluciones enteras.

∙ Matrix group membership. Dados 3 matrices invertibles del mismo tamaño, decidir
si la primera está en el subgrupo generado por las otras 2.

∙ Graph isomorphism. Decidir si 2 grafos son isomorfos.

12

Clase coNP

Definición
Un conjunto C está en la clase coNP si y solo si su complemento C̄ = I \ C está en
NP .

Por ejemplo, decidir si dos grafos son isomorfos está en NP , entonces decidir si dos
grafos no son isomorfos está en coNP .

¿NP = coNP?

13

Clase coNP

Definición
Un conjunto C está en la clase coNP si y solo si su complemento C̄ = I \ C está en
NP .

Por ejemplo, decidir si dos grafos son isomorfos está en NP , entonces decidir si dos
grafos no son isomorfos está en coNP .

¿NP = coNP?

13

Clase coNP

Definición
Un conjunto C está en la clase coNP si y solo si su complemento C̄ = I \ C está en
NP .

Por ejemplo, decidir si dos grafos son isomorfos está en NP , entonces decidir si dos
grafos no son isomorfos está en coNP .

¿NP = coNP?

13

Clase coNP

14

Reducciones eficientes

Definición
Sean C,D ⊂ I dos problemas de clasificación. f : I → I es una reducción eficiente de C
a D si f ∈ P y para todo x ∈ I vale que x ∈ C si y solo si f(x) ∈ D. Se denota con C ≤ D
si existe una reducción eficiente de C a D.

15

Reducciones eficientes

16

Ejemplo

1. ¿Qué ecuaciones diofánticas de la forma Ax2 + By+ C = 0 tienen una solución
entera positiva?

2. ¿Qué nudos en variedades tridimensionales unen una superficie de género ≤ g?

3. ¿Qué mapas planares son 3-coloreables?

Teorema
Los problemas 1., 2. y 3. son equivalentes.

Es decir,

∙ 1. ≤ 2.

∙ 2. ≤ 3.

∙ 3. ≤ 1.

17

¡Muchas gracias!

18

